Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Design of peptides with α, β-dehydro residues: a dipeptide with a branched β-carbon dehydro residue at the (i+1) position, methyl N-(benzyloxycar-bonyl)- α, β-didehydrovalyl-L-tryptophanate

Rangachari Vijayaraghavan, Pravindra Kumar, Sharmistha Dey and Tej P. Singh*

Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar,
New Delhi 110 029, India
Correspondence e-mail: tps@aiims.aiims.ac.in

Received 15 February 2001
Accepted 7 August 2001

The structure of the title peptide, $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$, has been determined and its conformation analysed. Values of the standard peptide torsion angles are $\varphi_{1}=-44.2(3)^{\circ}, \psi_{1}=$ $135.9(2)^{\circ}, \varphi_{2}=-141.6(2)^{\circ}$ and $\psi_{2}^{T}=168.0(2)^{\circ}$. The crystal structure is stabilized by an intermolecular hydrogen bond, with an $\mathrm{N} \cdots \mathrm{O}$ distance of 2.919 (3) \AA, which is formed between screw-axis-related NH and CO groups of dehydrovaline residues.

Comment

α, β-Dehydroamino acids are strong inducers of folded conformations in peptides. A set of design rules have been developed with dehydrophenylalanine (Δ Phe), dehydroleucine ($\Delta \mathrm{Leu}$), dehydro- α-aminobutyric acid ($\Delta \mathrm{Abu}$) and dehydroalanine (Δ Ala) (Singh \& Kaur, 1996). However, the branched β-carbon residues, such as valine and isoleucine,

(II)
have not been used so far as dehydro residues, although the conformational preferences of valine and isoleucine are known to be different from those of other residues. In order to develop new design rules with dehydrovaline ($\Delta \mathrm{Val}$) and
dehydroisoleucine (Δ Ile), the structure of a dipeptide with Δ Val, (II), has been determined.

The structure (Fig. 1) shows that the $\mathrm{C} 1 A-\mathrm{C} 1 B$ distance of 1.339 (3) \AA in Δ Val corresponds to a standard $\mathrm{C}=\mathrm{C}$ doublebond distance of $1.32 \AA$ (Rose et al., 1985). Due to unfavourable interactions between the atoms of the backbone and those of the side chain, the $\mathrm{N} 1-\mathrm{C} 1 A-\mathrm{C} 1 P$ angle closes to

Figure 1
The molecular structure of the title peptide shown with the atomnumbering scheme and 30% probability displacement ellipsoids.
114.2 (2) ${ }^{\circ}$. The other two angles, $\mathrm{N} 1-\mathrm{C} 1 A-\mathrm{C} 1 B$ and $\mathrm{C} 1 P-$ $\mathrm{C} 1 A-\mathrm{C} 1 B$, are 121.3 (2) and $123.5(2)^{\circ}$, respectively.

The peptide adopts a conformation characterized by the torsion angles $\varphi_{1}(\mathrm{C} P-\mathrm{N} 1-\mathrm{C} 1 A-\mathrm{C} 1 P)=-44.2(3)^{\circ}, \psi_{1}$ $(\mathrm{N} 1-\mathrm{C} 1 A-\mathrm{C} 1 P-\mathrm{N} 2)=135.9(2)^{\circ}, \varphi_{2}(\mathrm{C} 1 P-\mathrm{N} 2-\mathrm{C} 2 A-$ $\mathrm{C} 2 P)=-141.6(2)^{\circ}$ and $\psi_{2}^{T}(\mathrm{~N} 2-\mathrm{C} 2 A-\mathrm{C} 2 P-\mathrm{O} 3 T)=$ $168.0(2)^{\circ}$. It may be noted that the values of the torsion angles of $\Delta \mathrm{Val}$ correspond to the φ, ψ values of an $(i+1)$ th residue in a β-turn II conformation. This indicates that the $\Delta \mathrm{Val}$ residue at the $(i+1)$ position may promote a β-turn II conformation. The values of the torsion angles $\chi_{1}^{1,1}(\mathrm{~N} 1-\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{C} 1 G 1)$ and $\chi_{1}^{1,2}(\mathrm{~N} 1-\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{C} 1 G 2)$ of dehydrovaline are -6.6 (4) and $170.1(3)^{\circ}$, respectively, and indicate that the Δ Val side chain is essentially planar.

The crystal packing is stabilized by a hydrophobic region formed by the aromatic rings of tryptophans and the benzene rings of benzyloxycarbonyl (Cbz) groups. The packing is further stabilized by an intermolecular hydrogen bond formed between the screw-axis-related NH and CO groups of the Δ Val residue $\left[\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 P^{\mathrm{i}}: \mathrm{N} 1 \cdots \mathrm{O} P^{\mathrm{i}}=2.919(3) \AA\right.$, $\mathrm{H} 1 \cdots \mathrm{O} 1 P^{\mathrm{i}}=2.16 \AA$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 P^{\mathrm{i}}=147^{\circ}$; symmetry code: (i) $\left.-x, y-\frac{1}{2},-z+\frac{1}{2}\right]$.

Experimental

The synthesis of $\mathrm{Cbz}-\Delta \mathrm{Val}-\mathrm{OH}$, (I), was carried out by condensation of 3-methyl-2-oxo-butanoic acid ($1 \mathrm{~g}, 7.2 \mathrm{mmol}$) with benzyl carbamate $(1.98 \mathrm{~g}, 10.8 \mathrm{mmol})$ and p-toluenesulfonic acid $(0.47 \mathrm{~g}$, 2.1 mmol) in dry benzene. The reaction mixture was refluxed at 373 K for 8 h using a Dean-Stark water remover. The solution was then extracted with saturated sodium bicarbonate. The extracts were neutralized by adding concentrated HCl dropwise to yield a white solid, which was filtered off and recrystallized from benzene. The solid product of $\mathrm{Cbz}-\Delta \mathrm{Val}-\mathrm{OH}$ was obtained in 67% yield. For the synthesis of Cbz- Δ Val-L-Trp- OCH_{3} (Trp is L-tryptophan), (II), N-methylmorpholine $(0.29 \mathrm{ml}, 2.69 \mathrm{mmol})$ was added to a chilled (263 K) solution of (I) $(0.67 \mathrm{~g}, 2.69 \mathrm{mmol})$ in tetrahydrofuran. This was followed by the addition of isobutyl chloroformate $(0.36 \mathrm{ml}$, 2.69 mmol) and the resulting solution was stirred for 20 min . A precooled solution of L-Trp- $\mathrm{OCH}_{3} \cdot \mathrm{HCl}(0.82 \mathrm{~g}, 3.2 \mathrm{mmol})$ was added to the reaction mixture. The resulting solution was stirred for 2 h at 273 K and then overnight at room temperature. After completion of the reaction (monitored by thin-layer chromatography), the solvent was removed under vacuum; the resulting residual material was dissolved in ethyl acetate and washed successively with water, 10% sodium bicarbonate, 5% citric acid and water. The organic layer was dried over anhydrous sodium sulfate and then evaporated to yield 72% of (II) (m.p. 438 K). The peptide was recrystallized from a solution in acetone-water ($4: 1$) by slow evaporation.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$
$M_{r}=449.50$
Monoclinic, $A 2$
$a=17.1524$ (9) \AA
$b=6.1439$ (9) A
$c=22.6183(11) \AA$
$\beta=107.791(12)^{\circ}$
$V=2269.6(4) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.315 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=0-25^{\circ} \\
& \mu=0.76 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.3 \times 0.2 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: empirical
(SDP; Enraf-Nonius, 1979)
$T_{\text {min }}=0.835, T_{\text {max }}=0.928$
2576 measured reflections
2576 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.146$
$S=1.04$
2576 reflections
302 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1137 P)^{2}\right. \\
& +0.5403 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0018 \text { (4) }
\end{aligned}
$$

All H atoms were visible in difference maps and were allowed for as riding atoms (with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.98 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$). In this light-atom structure, it was not possible to establish the absolute configuration from the Flack (1983) parameter [0.1 (3)]; the configuration chosen and shown in both the Scheme and Fig. 1 was determined by the configuration of the starting material in the synthesis (L-tryptophan).

Data collection: $S D P$ (Enraf-Nonius, 1979); cell refinement: $S D P$; data reduction: SDP; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97.

The authors thank the Council of Scientific and Industrial Research, New Delhi, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1138). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1979). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Rose, G. D., Gierasch, L. M. \& Smith, J. A. (1985). Advances in Protein Chemistry, edited by C. B. Anfinsen Jr, J. T. Edsal \& F. M. Richards, p. 37. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Singh, T. P. \& Kaur, P. (1996). Prog. Biophys. Mol. Biol. 66, 141-165.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.

